Hybrid Distractor for Continuous Mandibular Distraction Osteogenesis

Bioengineering (Basel). 2022 Nov 28;9(12):732. doi: 10.3390/bioengineering9120732.

Abstract

Distraction osteogenesis (DO) is a reconstruction method for repairing bone deficiencies in the oral and maxillofacial area. Manual DO techniques have shown the functionality of the DO method for bone tissue reconstruction. The DO method can improve treatment conditions, as well as the quality of the reconstructed bone, compared with conventional techniques. Recently, continuous DO devices have been proposed to enable an automatic DO process while using a continuous force for moving the bone segment (BS). Animal studies and clinical trials have shown the successful application of continuous distractors in terms of improving DO factors, including rate and rhythm. The continuous DO technique can shorten the treatment time and enhance the quality of the regenerated tissue. However, the developed continuous distractors are yet to be used in human applications. In this study, by combining motor-driven and hydraulic techniques, a hybrid distractor is proposed. The hybrid distractor is capable of generating a continuous distraction force while controlling the position of the BS in a linear vector, with a high positioning accuracy. Results of modelling and experimental study revealed that the proposed hybrid distractor met all required factors for enabling a continuous DO procedure in humans. The proposed distractor is capable of eliminating the drawbacks of exiting techniques in terms of generating and transferring a controlled distraction force to the BS. The wireless control, as well as the small size of the device, makes this device a suitable solution for use in the reconstruction of bone defects in the maxillofacial area in humans.

Keywords: bone regeneration; continuous distraction osteogenesis; implanted active distractor; mandibular reconstruction; medical device.

Grants and funding

This work was supported by the research center for healthcare industry innovation, national Taipei university of nursing and health sciences.