The importance of what we cannot observe: Experimental limitations as a source of bias for meta-regression models in predictive microbiology

Int J Food Microbiol. 2023 Feb 16:387:110045. doi: 10.1016/j.ijfoodmicro.2022.110045. Epub 2022 Dec 5.

Abstract

Meta-regression models have gained in popularity during the last years as a way to create more generic models for Microbial Risk Assessments that also include variability. However, as with most meta-analyses and empirical models, systematic biases in the data can result in inaccurate models. In this article, we define experimental bias as a type of selection bias due to the practical limitations of microbial inactivation experiments. Conditions with extremely high D-values (i.e. slow inactivation) need very long experimental runs to cause significant reductions. On the other hand, when the D-value is extremely low, not enough data points can be gathered before the microbial population is below the detection limit. Consequently, experimental designs favour conditions within a practical experimental range, introducing a selection bias in the D-values. We demonstrate the impact of experimental bias in meta-regression models using numerical simulations. Models fitted to data with experimental bias overestimated the z-value and underestimated variability. We propose a rapid heuristic method to identify experimental bias in datasets, and we propose truncated regression to mitigate its impact in meta-regression models. Both methods were validated using simulated data. Thereafter the procedures were tested by building a meta-regression model for actual data for the inactivation of Bacillus cereus spores. We concluded that the dataset included experimental bias, and that it would cause an overestimation of the microbial resistance at high temperatures (>120 °C) for classical meta-regression models. This effect was mitigated when the model was built using truncated regression. In conclusion, we demonstrate that experimental bias could potentially result in inaccurate models for predictive microbiology. Therefore, checking for experimental bias should be a routine step in meta-regression modelling, and be included in guidelines on data analysis for meta-regression.

Keywords: D-value, thermal resistance; Meta-analysis; Microbial inactivation; Selection bias.

MeSH terms

  • Bacillus cereus / physiology
  • Bias*
  • Food Microbiology
  • Hot Temperature
  • Microbial Viability