The influence of saccharin adsorption on NiFe alloy film growth mechanisms during electrodeposition

RSC Adv. 2022 Dec 14;12(55):35722-35729. doi: 10.1039/d2ra07118e. eCollection 2022 Dec 12.

Abstract

This article deals with the effects of current modes on saccharin adsorption during NiFe electrodeposition, and, as a consequence, its effect on chemical composition, crystal structure, and microstructure of deposited films. For this purpose, we obtained NiFe films using direct, pulse, and pulse-reverse electrodeposition modes. The deposit composition, crystal structure, and surface microstructure are studied. Direct current (DC) and pulse current (PC) films have a smooth surface, while a pulse-reverse current (PRC) film surface is covered by a volumetric cauliflower-like microstructure. The mechanism of the film surface development was considered from the point of view of saccharin adsorption and its action as an inhibitor of vertical grain growth during different current modes. During the DC and PC modes, saccharin is freely adsorbed on the growth centers and restrains their vertical growth. Whereas in the case of the PRC electrodeposition, saccharin adsorbs during cathodic pulses and desorbs during anodic pulses. Therefore, its inhibiting action decreases, vertical grain growth rises, and a rougher surface develops.