Helicobacter hepaticus augmentation triggers Dopaminergic degeneration and motor disorders in mice with Parkinson's disease

Mol Psychiatry. 2023 Mar;28(3):1337-1350. doi: 10.1038/s41380-022-01910-2. Epub 2022 Dec 21.

Abstract

Gut dysbiosis contributes to Parkinson's disease (PD) pathogenesis. Gastrointestinal disturbances in PD patients, along with gut leakage and intestinal inflammation, take place long before motor disorders. However, it remains unknown what bacterial species in gut microbiomes play the key role in driving PD pathogenesis. Here we show that Helicobacter hepaticus (H. hepaticus), abundant in gut microbiota from rotenone-treated human α-Synuclein gene (SNCA) transgenic mice and PD patients, initiates α-Synuclein pathology and motor deficits in an AEP-dependent manner in SNCA mice. Chronic Dextran sodium sulfate (DSS) treatment, an inflammatory inducer in the gut, activates AEP (asparagine endopeptidase) that cleaves α-Synuclein N103 and triggers its aggregation, promoting inflammation in the gut and the brain and motor defects in SNCA mice. PD fecal microbiota transplant or live H. hepaticus administration into antibiotics cocktail (Abx)-pretreated SNCA mice induces α-Synuclein pathology, inflammation in the gut and brain, and motor dysfunctions, for which AEP is indispensable. Hence, Helicobacter hepaticus enriched in PD gut microbiomes may facilitate α-Synuclein pathologies and motor impairments via activating AEP.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Dopamine
  • Helicobacter hepaticus
  • Humans
  • Inflammation
  • Mice
  • Mice, Transgenic
  • Motor Disorders*
  • Parkinson Disease* / genetics
  • alpha-Synuclein

Substances

  • alpha-Synuclein
  • Dopamine