The Sag-Shoc2 axis regulates conversion of mPanINs to cystic lesions in Kras pancreatic tumor model

Cell Rep. 2022 Dec 20;41(12):111837. doi: 10.1016/j.celrep.2022.111837.

Abstract

SAG/RBX2 is an E3 ligase, whereas SHOC2 is a RAS-RAF positive regulator. In this study, we address how Sag-Shoc2 crosstalk regulates pancreatic tumorigenesis induced by KrasG12D. Sag deletion increases the size of pancreas and causes the conversion of murine pancreatic intraepithelial neoplasms (mPanINs) to neoplastic cystic lesions with a mechanism involving Shoc2 accumulation, suggesting that Sag determines the pathological process via targeting Shoc2. Shoc2 deletion significantly inhibits pancreas growth, mPanIN formation, and acinar cell transdifferentiation, indicating that Shoc2 is essential for KrasG12D-induced pancreatic tumorigenesis. Likewise, in a primary acinar 3D culture, Sag deletion inhibits acinar-to-ductal transdifferentiation, while Shoc2 deletion significantly reduces the duct-like structures. Mechanistically, SAG is an E3 ligase that targets SHOC2 for degradation to affect both Mapk and mTorc1 pathways. Shoc2 deletion completely rescues the phenotype of neoplastic cystic lesions induced by Sag deletion, indicating physiological relevance of the Sag-Shoc2 crosstalk. Thus, the Sag-Shoc2 axis specifies the pancreatic tumor types induced by KrasG12D.

Keywords: CP: Cancer; Deptor; KRAS; MAPK and mTORC1 signals; Sag/Rbx2 E3 ligase; Shoc2; cystic lesions; cystogenesis; pancreatic tumorigenesis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Carcinogenesis
  • Carcinoma in Situ* / metabolism
  • Carcinoma, Pancreatic Ductal* / pathology
  • Cell Transformation, Neoplastic / pathology
  • Mice
  • Pancreas / metabolism
  • Pancreatic Neoplasms* / pathology
  • Proto-Oncogene Proteins p21(ras) / genetics
  • Proto-Oncogene Proteins p21(ras) / metabolism
  • Signal Transduction
  • Ubiquitin-Protein Ligases / genetics
  • Ubiquitin-Protein Ligases / metabolism

Substances

  • Ubiquitin-Protein Ligases
  • Proto-Oncogene Proteins p21(ras)