Heterostructure tailoring of carbon nanotubes grown on prismatic NiCo clusters for high-efficiency electromagnetic absorption

J Colloid Interface Sci. 2023 Mar 15:634:185-194. doi: 10.1016/j.jcis.2022.12.037. Epub 2022 Dec 12.

Abstract

The employment of electromagnetic (EM) absorbers integrating elaborate architecture, enhanced microwave absorption and multifunctional features remains a formidable challenge in practical applications including military stealth and incoming 5G electronic information era. Herein, a novel microwave absorber has been fabricated by in-situ growing carbon nanotubes (CNTs) on the prismatic nickel-cobalt (NiCo) clusters derived from Ni-Co layered double hydroxides (NiCo-LDH) via catalytic carbonization of ethyl acetate. The NiCo/CNTs composites with highly porous texture could provide sufficient open space to balance the impedance and introduce magnetic loss mechanism. Accordingly, the absorbers achieved remarkable EM absorption performance with a minimum reflection loss of -46.2 dB at 1.5 mm and broad bandwidth of 5.8 GHz owing to synergistic magnetic-dielectric effects and distinct structural merits. The NiCo/CNTs absorber manifests superior radar wave attenuation by the radar cross section simulation and density functional theory (DFT) was also performed to elucidate the potential mechanisms of the heterostructure formation and performance enhancement in the NiCo/CNTs composites. This work is expected to provide new insights or inspirations to modulate EM properties by rationally designing heterostructure for the elimination of severe EM pollution.

Keywords: Electromagnetic absorption; NiCo-LDH prisms; Radar cross section simulation; Synergistic effect.