Self-Activation of Inorganic-Organic Hybrids Derived through Continuous Synthesis of Polyoxomolybdate and para-Phenylenediamine Enables Very High Lithium-Ion Storage Capacity

ChemSusChem. 2023 Apr 6;16(7):e202202213. doi: 10.1002/cssc.202202213. Epub 2023 Feb 3.

Abstract

Inorganic-organic hybrid materials with redox-active components were prepared by an aqueous precipitation reaction of ammonium heptamolybdate (AHM) with para-phenylenediamine (PPD). A scalable and low-energy continuous wet chemical synthesis process, known as the microjet process, was used to prepare particles with large surface area in the submicrometer range with high purity and reproducibility on a large scale. Two different crystalline hybrid products were formed depending on the ratio of molybdate to organic ligand and pH. A ratio of para-phenylenediamine to ammonium heptamolybdate from 1 : 1 to 5 : 1 resulted in the compound [C6 H10 N2 ]2 [Mo8 O26 ] ⋅ 6 H2 O, while higher PPD ratios from 9 : 1 to 30 : 1 yielded a composition of [C6 H9 N2 ]4 [NH4 ]2 [Mo7 O24 ] ⋅ 3 H2 O. The electrochemical behavior of the two products was tested in a battery cell environment. Only the second of the two hybrid materials showed an exceptionally high capacity of 1084 mAh g-1 at 100 mA g-1 after 150 cycles. The maximum capacity was reached after an induction phase, which can be explained by a combination of a conversion reaction with lithium to Li2 MoO4 and an additional in situ polymerization of PPD. The final hybrid material is a promising material for lithium-ion battery (LIB) applications.

Keywords: continuous synthesis; electrodes; inorganic-organic hybrid materials; lithium-ion batteries; polyoxometalates.