Characterization, comparative, and functional analysis of arylacetamide deacetylase from Gnathostomata organisms

J Genet Eng Biotechnol. 2022 Dec 21;20(1):169. doi: 10.1186/s43141-022-00443-z.

Abstract

Background: Arylacetamide deacetylase (AADAC) is a lipolytic enzyme involved in xenobiotic metabolism. The characterization in terms of activity and substrate preference has been limited to a few mammalian species. The potential role and catalytic activities of AADAC from other organisms are still poorly understood. Therefore, in this work, the physicochemical properties, proteomic analysis, and protein-protein interactions from Gnathostomata organisms were investigated.

Results: The analysis were performed with 142 orthologue sequences with ~ 48-100% identity with human AADAC. The catalytic motif HGG[A/G] tetrapeptide block was conserved through all AADAC orthologues. Four variations were found in the consensus pentapeptide GXSXG sequence (GDSAG, GESAG, GDSSG, and GSSSG), and a novel motif YXLXP was found. The prediction of N-glycosylation sites projected 4, 1, 6, and 4 different patterns for amphibians, birds, mammals, and reptiles, respectively. The transmembrane regions of AADAC orthologues were not conserved among groups, and variations in the number and orientation of the active site and C-terminal carboxyl were observed among the sequences studied. The protein-protein interaction of AADAC orthologues were related to cancer, lipid, and xenobiotic metabolism genes.

Conclusion: The findings from this computational analysis offer new insight into one of the main enzymes involved in xenobiotic metabolism from mammals, reptiles, amphibians, and birds and its potential use in medical and veterinarian biotechnological approaches.

Keywords: AADAC; Arylacetamide deacetylase; Computational analysis; Interactome; Orthologues.