Opposite polarity programs regulate asymmetric subsidiary cell divisions in grasses

Elife. 2022 Dec 20:11:e79913. doi: 10.7554/eLife.79913.

Abstract

Grass stomata recruit lateral subsidiary cells (SCs), which are key to the unique stomatal morphology and the efficient plant-atmosphere gas exchange in grasses. Subsidiary mother cells (SMCs) strongly polarise before an asymmetric division forms a SC. Yet apart from a proximal polarity module that includes PANGLOSS1 (PAN1) and guides nuclear migration, little is known regarding the developmental processes that form SCs. Here, we used comparative transcriptomics of developing wild-type and SC-less bdmute leaves in the genetic model grass Brachypodium distachyon to identify novel factors involved in SC formation. This approach revealed BdPOLAR, which forms a novel, distal polarity domain in SMCs that is opposite to the proximal PAN1 domain. Both polarity domains are required for the formative SC division yet exhibit various roles in guiding pre-mitotic nuclear migration and SMC division plane orientation, respectively. Nonetheless, the domains are linked as the proximal domain controls polarisation of the distal domain. In summary, we identified two opposing polarity domains that coordinate the SC division, a process crucial for grass stomatal physiology.

Keywords: Brachypodium distachyon; asymmetric cell division; cell polarity; developmental biology; grass stomata; plant biology; stomatal gas exchange; subsidiary cells.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Asymmetric Cell Division
  • Cell Division
  • Cell Polarity
  • Plant Leaves*
  • Plant Stomata* / physiology
  • Poaceae

Associated data

  • GEO/GSE201294