Isolation of multidrug resistance bacteria from the patients with wound infection and their antibiotics susceptibility patterns: A cross-sectional study

Ann Med Surg (Lond). 2022 Nov 14:84:104895. doi: 10.1016/j.amsu.2022.104895. eCollection 2022 Dec.

Abstract

Introduction: Antimicrobial resistance has become one of the most severe public problems in both developed and developing countries like Bangladesh. In this study, several multi-drug resistant bacteria were isolated from the wound infections and demonstrated their antibiotic susceptibility pattern in Bangladeshi patients.

Methods: A total of 699 bacterial isolates were collected from wound swabs and each isolate was identified using gram staining, biochemical assays, antibiotic susceptibility tests with the disk diffusion method, and colony morphology. Samples were taken from January 2018 to December 2019. The analysis was conducted using SPSS (Inc., Chicago, IL, USA), and descriptive statistics were employed to illustrate the findings.

Results: We have found 14.4% gram-positive bacteria (n = 100) and 85.6% gram-negative bacteria (n = 595) among the 695 samples by gram staining methods. The most prevalent gram-positive and gram-negative bacteria present in wound infections were Staphylococcus spp. (81.5%) and Pseudomonas spp. (89%), respectively. Antimicrobials that were mostly resistant to gram-negative isolates were Amoxicillin (75.8%), Cefixime (75.5%), Cefuroxime (70.3%), and Ceftazidime (69.6%). On the other hand, cefixime and ceftazidime accounted for 73% of the resistance against gram-positive isolates, followed by amoxicillin (71%), and penicillin-G (69%). Meropenem was found to be the most sensitive antibiotic for gram-negative bacteria. Meropenem and Gentamycin were found to have a percentage of sensitivity for gram-positive bacteria. Based on the assessment of 13 different antimicrobial classes, the percentage of multi-drug resistant bacteria identified in gram-negative bacteria was 84% and in gram-positive bacteria was 79%. Among gram-negative bacterial isolates, 82% pseudomonas spp, 88.5% Klebsiella spp, and 91.6% Proteus spp were reported as multi-drug resistant. On the other hand, Pseudomonas spp, Klebsiella spp, and Proteus spp. were found to be multi-drug resistant in 82%, 88.5%, and 91.6% of gram-negative bacterial isolates, respectively. It was shown that staphylococcus aureus (81%) and staphylococcus spp (78.6%) became gram-positive among gram-positive isolates.

Conclusion: According to this study, frequently isolated bacteria have a high frequency of MDR, which is the most pressing issue in public health. This study helps to manage the evidence-based treatment strategy and the urgency of early identification of drug-resistant bacteria that can reduce disease burden.

Keywords: Antibiotic resistance; Antibiotic susceptibility test; Antimicrobial resistance; Gram-staining; Multi-drug resistance.