Semi-solid electrolyte with layered heterometallic low-valent electron-mediator enabling indirect destruction of gaseous toluene

Chemosphere. 2023 Feb:313:137590. doi: 10.1016/j.chemosphere.2022.137590. Epub 2022 Dec 16.

Abstract

The electrochemical degradation of air pollutants, particularly volatile organic compounds (VOCs), at their gaseous state is a promising method. However, it remains at an infant stage due to sluggish solid-gas electron transfers at room temperature. We established a triphase reaction condition using a semi-solid electrolyte layer between the electrode and membrane to enhance the electron transfer at room temperature. A polyvinyl alcohol (PVA) gel layer was inserted between a bimetallic layered CuNi(CN)4 complex coated Cu foam electrode (TCNi-Cu) and Nafion 324 membrane for the degradation of gaseous toluene. The cyclic voltammetry of TCNi-Cu using a sodium hydroxide-coated copper mesh electrode at a triphase showed Cu1+ and Ni1+ stabilization at -0.7 and -0.9 V, respectively, which was similar to the liquid phase electron transfer behavior. The degradation capacity of gaseous toluene without using electrogenerated TCNi-Cu + PVA gel was 0.54 mg cm2 min-1, whereas that of TCNi-Cu + PVA gel layers was 1.17 mg cm-2min-1, which revealed the mediation effect at a triphase condition. Toluene was converted into oxygen-containing products, such as butanol, propanol, and acetone (without reduction products), which revealed that indirect oxidation occurred at the cathode using an in-situ generated oxidant, such as OH˙ radical. As an electron-mediator, Cu1+ was used to form oxidants for the degradation of toluene at -0.7 V. The toluene removal rate reached 1.4 μmol h-1, with an energy efficiency of 0.15 Wh L-1. This study is the first attempt to describe a liquid-electrolyte-free cathodic half-cell in electrochemical application to VOCs degradation, highlighting the electron transfer at room temperature.

Keywords: Cathodic half-cell; Electron mediator; Gaseous toluene removal; Triphase reaction.

MeSH terms

  • Air Pollutants* / analysis
  • Electrons
  • Gases*
  • Humans
  • Oxidants
  • Oxidation-Reduction
  • Toluene / chemistry

Substances

  • Gases
  • Toluene
  • Air Pollutants
  • Oxidants