Research on Microstructure and Mechanical Properties of Nylon6/Basalt Fiber/High-Density Polyethylene Composites

ACS Omega. 2022 Nov 29;7(49):44972-44983. doi: 10.1021/acsomega.2c05280. eCollection 2022 Dec 13.

Abstract

As a representative polyolefin, high-density polyethylene (HDPE) has become one of the most commonly used commercial plastics with a wide range of applications in the world. However, its applications are limited due to poor mechanical properties. Hence, it is indispensable to develop composites with improved mechanical properties to overcome this disadvantage. In our work, basalt fiber (BF) and polyamide 6 (PA6)-reinforced HDPE composites were prepared. The effects of adding fiber, organic filler, and polar component maleic anhydride (MAH) on the microstructural characteristics of composites were investigated. Microstructural characterization evidenced that the binary-dispersed phase (PA6/BF) possesses a core-shell structure in which the component PA6 encapsulates the component BF, and the extent of encapsulation declines with the increase of MAH addition. It has been confirmed by scanning electron microscopy (SEM) observation that the microstructure is related to the interfacial tension of components. The effects of multicomponents on the crystallization behavior of composites were studied. The differential scanning calorimeter (DSC) analysis exhibited a significant change in the HDPE microstructure. Results showed that, as nucleating agents, PA6 and BF improve the crystallization rate in the cooling process. Furthermore, the rheological behavior of multicomponent composites was studied. With the increase of MAH, a clear improvement of complex viscosity and storage modulus was observed, of which the mechanism has been discussed in detail. The relationship between microstructure and heat resistance of composites was studied by a thermal deformation test under static fore. It is confirmed that the thermally conductive fiber BF and other components can form a thermally conductive network and channels, thus improving the heat resistance. It can become a composite material, which is suitable for special environments.