Synthesis of azafluoranthenes by iridium-catalyzed [2 + 2 + 2] cycloaddition and evaluation of their fluorescence properties

Org Biomol Chem. 2023 Jan 4;21(2):323-331. doi: 10.1039/d2ob01921c.

Abstract

We report a method for the synthesis of azafluoranthenes under neutral reaction conditions in a highly atom-economical manner by the iridium-catalyzed [2 + 2 + 2] cycloaddition of 1,8-dialkynylnaphthalenes with nitriles. A variety of nitriles react with methyl- or phenyl-substituted 1,8-dialkynylnaphthalenes to give a wide range of azafluoranthenes. Azafluoranthenes bearing an amino group show intense fluorescence at around 500 nm. Comparison of the fluorescence properties of amine-substituted azafluoranthenes with related compounds revealed the importance of the amine moiety for obtaining a high fluorescence quantum yield. The choice of the solvent affected the emission maxima and the fluorescence quantum yield. Azafluoranthenes bearing pyrrolidine exhibited blue-shifted emission bands in a non-polar solvent and gave a fluorescence quantum yield of 0.76 in toluene. A Lippert-Mataga plot and computational studies provide insight into the origin of the fluorescence of azafluoranthenes. Furthermore, cellular experiments using human breast adenocarcinoma cells SK-BR-3 demonstrated the feasibility of using azafluoranthenes as fluorescent probes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amines
  • Catalysis
  • Cycloaddition Reaction
  • Humans
  • Iridium*
  • Nitriles*
  • Solvents

Substances

  • Iridium
  • Solvents
  • Nitriles
  • Amines