Differentiation of subnucleus-sized oligomers and nucleation-competent assemblies of the Aβ peptide

Biophys J. 2023 Jan 17;122(2):269-278. doi: 10.1016/j.bpj.2022.12.020. Epub 2022 Dec 17.

Abstract

A significant feature of Alzheimer's disease is the formation of amyloid deposits in the brain consisting mainly of misfolded derivatives of proteolytic cleavage products of the amyloid precursor protein amyloid-β (Aβ) peptide. While high-resolution structures already exist for both the monomer and the amyloid fibril of the Aβ peptide, the mechanism of amyloid formation itself still defies precise characterization. In this study, low and high molecular weight oligomers (LMWOs and HMWOs) were identified by sedimentation velocity analysis, and for the first time, the temporal evolution of oligomer size distributions was correlated with the kinetics of amyloid formation as determined by thioflavin T-binding studies. LMWOs of subnucleus size contain fewer than seven monomer units and exist alongside a heterogeneous group of HMWOs with 20-160 monomer units that represent potential centers of nucleus formation due to high local monomer concentrations. These HMWOs already have slightly increased β-strand content and appear structurally similar regardless of size, as shown by examination with a range of fluorescent dyes. Once fibril nuclei are formed, the monomer concentration begins to decrease, followed by a decrease in oligomer concentration, starting with LMWOs, which are the least stable species. The observed behavior classifies the two LMWOs as off pathway. In contrast, we consider HMWOs to be on-pathway, prefibrillar intermediates, representing structures in which nucleated conformational conversion is facilitated by high local concentrations. Aβ40 and Aβ42 M35ox take much longer to form nuclei and enter the growth phase than Aβ42 under identical reaction conditions, presumably because both the size and the concentration of HMWOs formed are much smaller.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alzheimer Disease* / metabolism
  • Amyloid / metabolism
  • Amyloid beta-Peptides* / chemistry
  • Humans
  • Peptide Fragments / chemistry
  • Protein Folding

Substances

  • Amyloid beta-Peptides
  • Peptide Fragments
  • Amyloid