Toward Water-Immersion Programmable Meta-Display

Adv Sci (Weinh). 2023 Feb;10(5):e2205581. doi: 10.1002/advs.202205581. Epub 2022 Dec 18.

Abstract

Heading toward next-generation intelligent display, dynamic control capability for meta-devices is critical for real world applications. Beyond the conventional electrical/optical/mechanical/thermal tuning methods, liquid immersion recently has emerged as a facile tuning mechanism which is easily accessible (especially water) and practically implementable for large tuning area. However, due to the longstanding and critical drawback of lacking independent-encoding capability, the state-of-art immersion approach remains incapable of pixel-level programmable switching. Here a water-immersion tuning scheme with pixel-scale programmability for dynamic meta-displays is proposed. Tunable meta-pixels can be engineered to construct spectral selective patterns at prior-/post- immersion states, such that a metasurface enables pixel-level transforming animations for dynamic multifield meta-displays, including near-field dual-nanoprints and far-field dual-holographic displays. The proposed water-immersion programmable approach for meta-display, benefitting from its large tuning area, facile operation and strong repeatability, may find a revolutionary path toward next-generation intelligent display with practical applications in dynamic display/encryption, information anticounterfeit/storage, and optical sensors.

Keywords: independent-programmable; meta-holography; meta-nanoprinting; tunable meta-display; water-immersion.