Spatial distributions of microbial diversity in the contaminated deep groundwater: A case study of the Huaibei coalfield

Environ Pollut. 2023 Feb 1:318:120866. doi: 10.1016/j.envpol.2022.120866. Epub 2022 Dec 15.

Abstract

The impact of coal mining activities on the structure of groundwater microbial communities in coal mining areas has gradually received academic attention. In this study, hydrochemical analysis and sequencing of the V4 region of the 16S rRNA gene were carried out using groundwater samples from the fourth aquifer in the loose layer of Cenozoic, the sandstone fissure aquifer in the coal measure strata of Permian, the Carboniferous Taiyuan Formation limestone aquifer, and the Ordovician limestone aquifer, at depths of 250 m, 600 m, 750 m, and 1000 m in monitoring wells. Results showed that the operational taxonomy units (OTUs) in the deep groundwater ecosystem were clustered distinguishably between the contaminated and the uncontaminated aquifers. The microbial community alpha-diversity of groundwater was significantly correlated with depth, and the richness of microbial community composition decreased with increasing depth. Proteobacteria (34.41%-97.41%), was found to be the dominant phylum, Gammaproteobacteria (10.05%-92.06%) was the dominant class and "Unassigned" (4.12%-64.72%) was dominant at the genus level. The number of endemic bacteria in the four aquifers was 1, 33, 99 and 11, respectively. It was also found that F-, oxidation-reduction potential (ORP), and TOC were the main environmental variables affecting the groundwater all OTUs, abundant OTUs, and rare OTUs, respectively. These results indicate that the activity of rare OTU subcommunities increases gradually with increasing aquifer depth and that mining significantly enriched Thiovirga in deep groundwater. In addition, it was found that with the increase of depth, the effect of ORP on microbial community abundance decreased. This study deepens our understanding of the evolution characteristics of microbial communities in deep groundwater in coal mining areas. The unique characteristics of microbial communities characteristics of four aquifers with different depths provide a microbial perspective for understanding the characteristics of deep aquifers.

Keywords: 16S rRNA genes; Deep groundwater; Huaibei coalfield; Microbial community.

MeSH terms

  • Calcium Carbonate
  • Coal Mining*
  • Gammaproteobacteria*
  • Groundwater* / chemistry
  • Microbiota*
  • RNA, Ribosomal, 16S / genetics

Substances

  • RNA, Ribosomal, 16S
  • Calcium Carbonate