Production and characterization of enriched vermicompost from banana leaf biomass waste activated by biochar integration

Environ Res. 2023 Feb 15:219:115090. doi: 10.1016/j.envres.2022.115090. Epub 2022 Dec 15.

Abstract

Vermicomposting uses less energy and requires fewer infrastructures, and it is capable of restoring soil nutrition and carbon. Banana cultivation produces lots of trash in a single crop season, with 30 tonnes of waste generated per acre. The biodegradable fraction of banana leaf waste is thrown out in large quantities from temples, markets place wedding halls, hotels, and residential areas. Vermicomposting can be used for recovering lignin, cellulose, pectin, and hemicellulose from banana leaves. Earthworm digests organic materials with the enzymes produced in gut microflora. Biochar adds bulk to vermicomposting, increases its value as fertilizer. The goal of this study was to amend biochar (0, 2, 4 and 6%) with banana leaf waste (BLW) + cow dung (CD) in three different combinations (1:1, 2:1 and 3:1) using Eisenia fetida to produce enriched vermicompost. In the vermicompost with biochar groups, there were higher levels of physicochemical parameters, as well as macro- and micronutrient contents. The growth and reproduction of earthworms were higher in groups with biochar. A maximum of 1.82, 1.18 and 1.67% of total nitrogen, total phosphorus and total potassium was found in the final vermicompost recovered from BLW + CD (1:1) amended with 4% biochar; while the other treatments showed lower levels of nutrients. A lower C/N ratio of 18.14 was observed in BLW + CD (1:1) + 4% biochar followed by BLW + CD (1:1) + 2% biochar amendment (19.92). The FTIR and humification index studies show that degradation of organic matter has occurred in the final vermicompost and the substrates with 4% biochar in 1:1 combination showed better degradation and this combination can be used for nutrient rich vermicompost production.

Keywords: Biochar amendment; Eisenia fetida; Nutrient improvement; Vermicomposting; Waste management.

MeSH terms

  • Animals
  • Biomass
  • Cattle
  • Charcoal / metabolism
  • Female
  • Manure
  • Musa*
  • Oligochaeta*
  • Soil

Substances

  • biochar
  • Manure
  • Charcoal
  • Soil