Functional threshold responses of benthic macroinvertebrates to environmental stressors in reservoirs

J Environ Manage. 2023 Mar 1:329:116970. doi: 10.1016/j.jenvman.2022.116970. Epub 2022 Dec 16.

Abstract

Reservoirs are aquatic ecosystems created by humans to supply water needs. They can impair aquatic diversity due to the lack of connectivity, reduced water volume, and pressures exerted by surrounding human activities. These changes are expected to produce abrupt fluctuations in the reservoirs' environment, thus influencing the structure and functioning of aquatic communities. Therefore, this study aimed to understand the impact of a range of environmental stressors in reservoirs on benthic macroinvertebrates by analyzing their functional threshold response. Biological data were collected in six reservoirs from the semi-arid region of Northeast Brazil, as case study. A total of 37.874 benthic macroinvertebrates belonging to 35 taxa were collected. Nevertheless, almost 90% of this abundance belonged to three species alone, considered generalists, with multivoltine reproduction and from the gatherer-collectors feeding group. Increases in environmental stressors such as salinity, nitrate, ammonia, and dissolved solids led to the selection of macroinvertebrates with specific traits (e.g., protected body, gill respiration, and large body size). These functional traits showed differences in their threshold response depending on the stressors and are indicators of the effects of these stressors on the reservoirs. Some of the potential sensitive traits (with a negative threshold response to the stressor) could also associate with other stressors, demonstrating that tolerance of benthic macroinvertebrates is defined by a set of functional characteristics. Overall, the increase in stressor' gradients selected functionally tolerant organisms with high resistance capacity, but these were represented by dominant species. This resulted in low diversity in the reservoirs, which may compromise ecosystem functioning, and raises concerns about adequate management of the systems.

Keywords: Benthic macrofauna; Bioindicators; Impact gradients; Semiarid; Traits.

MeSH terms

  • Animals
  • Ecosystem*
  • Environmental Monitoring / methods
  • Humans
  • Invertebrates* / physiology
  • Reproduction
  • Rivers / chemistry