Carbon deficit checks in high resolution and compensation under regional inequity

J Environ Manage. 2023 Feb 15:328:116986. doi: 10.1016/j.jenvman.2022.116986. Epub 2022 Dec 15.

Abstract

Carbon compensation is an effective way of reducing carbon emissions. However, previous studies in this field have been limited and have not examined high-precision scientific carbon compensation under regional inequity. The present study examined initial carbon compensation in the grid and developed a new equitable carbon compensation model. Additionally, it modified the carbon compensation value for each province and analysed how land-use change affected carbon compensation. The results show that, after the modification, the entire carbon deficit reached 17.34 × 108 t C in 2015, representing a decrease of 14% compared with the initial carbon deficit. The area with negative carbon deficit values accounted for 36% of the whole area, concentrated mainly in the south, southwest and northwest. Without modification, the initial carbon compensation reached 537 × 108 USD, and only Yunnan, Sichuan and Hainan provinces being eligible to receive compensation. The final modified carbon compensation was approximately 20% of the initial values, and 11 provinces were eligible to obtain compensation. The other provinces responsible for paying the carbon compensation costs were typically concentrated in Central and Eastern China. Land-use changes in 2015 led to increases in the initial carbon compensation and modified carbon compensation of 3.74 × 108 and 0.13 × 108 USD, respectively. The per-unit land-use change caused greater increases in carbon emissions in China's big cities and the provinces in Central and East China. Some policies, such as macro-control by the central government, diversified forms and patterns of compensation, and auxiliary measures should be formulated/proposed.

Keywords: Carbon compensation; Carbon deficit; China; Land-use change; Regional inequity.

MeSH terms

  • Carbon Dioxide* / analysis
  • Carbon* / analysis
  • China
  • Cities
  • Economic Development

Substances

  • Carbon
  • Carbon Dioxide