Recent advances in bioengineered scaffold for in vitro meat production

Cell Tissue Res. 2023 Feb;391(2):235-247. doi: 10.1007/s00441-022-03718-6. Epub 2022 Dec 17.

Abstract

In vitro meat production via stem cell technology and tissue engineering provides hypothetically elevated resource efficiency which involves the differentiation of muscle cells from pluripotent stem cells. By applying the tissue engineering technique, muscle cells are cultivated and grown onto a scaffold, resulting in the development of muscle tissue. The studies related to in vitro meat production are advancing with a seamless pace, and scientists are trying to develop various approaches to mimic the natural meat. The formulation and fabrication of biodegradable and cost-effective edible scaffold is the key to the successful development of downstream culture and meat production. Non-mammalian biopolymers such as gelatin and alginate or plant-derived proteins namely soy protein and decellularized leaves have been suggested as potential scaffold materials for in vitro meat production. Thus, this article is aimed to furnish recent updates on bioengineered scaffolds, covering their formulation, fabrication, features, and the mode of utilization.

Keywords: Biopolymers; In vitro meat; Plant proteins; Scaffold; Tissue engineering.

Publication types

  • Review

MeSH terms

  • Cell Differentiation
  • Meat
  • Pluripotent Stem Cells*
  • Tissue Engineering / methods
  • Tissue Scaffolds*

Grants and funding