Therapeutic Potential of Aptamer-Protein Interactions

ACS Pharmacol Transl Sci. 2022 Nov 4;5(12):1211-1227. doi: 10.1021/acsptsci.2c00156. eCollection 2022 Dec 9.

Abstract

Aptamers are single-stranded oligonucleotides (RNA or DNA) with a typical length between 25 and 100 nucleotides which fold into three-dimensional structures capable of binding to target molecules. Specific aptamers can be isolated against a large variety of targets through efficient and relatively cheap methods, and they demonstrate target-binding affinities that sometimes surpass those of antibodies. Consequently, interest in aptamers has surged over the past three decades, and their application has shown promise in advancing knowledge in target analysis, designing therapeutic interventions, and bioengineering. With emphasis on their therapeutic applications, aptamers are emerging as a new innovative class of therapeutic agents with promising biochemical and biological properties. Aptamers have the potential of providing a feasible alternative to antibody- and small-molecule-based therapeutics given their binding specificity, stability, low toxicity, and apparent non-immunogenicity. This Review examines the general properties of aptamers and aptamer-protein interactions that help to understand their binding characteristics and make them important therapeutic candidates.

Publication types

  • Review