Chiral liquid crystal based holographic reflective lens for spectral detection

Opt Express. 2022 Nov 21;30(24):42829-42839. doi: 10.1364/OE.472821.

Abstract

Flat optics based on chiral liquid crystal (CLC) can be achieved using holographic polarization recording with the help of a photoalignment technique to vary the orientation of the optical axis in a thin CLC layer. A variety of reflective diffractive optical components with high efficiency and polarization selectivity can be realized employing this technique. In this work we discuss the use of CLC diffractive lenses in a spectrometer. The functionalities of two mirrors and a linear grating used in a traditional spectrometer are combined into a single holographic CLC component. Circularly polarized light entering through the slit can be reflected and projected onto a linear detector by the CLC component, with over 90% efficiency. This excellent optical functionality can be achieved with a micrometer thin CLC layer, offering the opportunity for device integration.