Cell-Penetrating Peptide Conjugated Au Nanoclusters Selectively Suppress Refractory Lymphoma Cells via Targeting Both Canonical and Noncanonical NF-κB Signaling Pathways

Bioconjug Chem. 2023 Jan 18;34(1):228-237. doi: 10.1021/acs.bioconjchem.2c00529. Epub 2022 Dec 15.

Abstract

Activated B cell-like diffuse large B-cell lymphoma (ABC-DLBCL) is the most aggressive form of DLBCL, with a significantly inferior prognosis due to resistance to the standard R-CHOP immunochemotherapy. Survival of ABC-DLBCL cells addicted to the constitutive activations of both canonical and noncanonical NF-κB signaling makes them attractive therapeutic targets. However, a pharmaceutical approach simultaneously targeting the canonical and noncanonical NF-κB pathway in the ABC-DLBCL cell is still lacking. Peptide-conjugated gold nanoclusters (AuNCs) have emerged unique intrinsic biomedical activities and possess a great potential in cancer theranostics. Here, we demonstrated a Au25 nanocluster conjugated by cell-penetrating peptides that can selectively repress the growth of ABC-DLBCL cells by inducing efficient apoptosis, more efficiently than glutathione (GSH)-conjugated AuNCs. The mechanism study showed that the cell-penetrating peptides enhanced the cellular internalization efficiency of AuNCs, and the selective repression in ABC-DLBCL cells is due to the inhibition of inherent constitutive canonical and noncanonical NF-κB activities by AuNCs. Several NF-κB target genes involved in chemotherapy resistance in ABC-DLBCL cells, including anti-apoptotic Bcl-2 family members and DNA damage repair proteins, were effectively down-regulated by the AuNC. The emerged novel activity of AuNCs in targeting both arms of NF-κB signaling in ABC-DLBCL cells may provide a promising candidate and a new insight into the rational design of peptide-conjugated Au nanomedicine for molecular targeting treatment of refractory lymphomas.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Line, Tumor
  • Cell-Penetrating Peptides* / pharmacology
  • Humans
  • Lymphocytes / metabolism
  • Lymphoma, Large B-Cell, Diffuse* / drug therapy
  • Lymphoma, Large B-Cell, Diffuse* / genetics
  • Lymphoma, Large B-Cell, Diffuse* / pathology
  • Metal Nanoparticles* / chemistry
  • NF-kappa B* / metabolism
  • Signal Transduction

Substances

  • Cell-Penetrating Peptides
  • NF-kappa B