Solvent-Type Passivation Strategy Controls Solid-State Self-Quenching-Resistant Behavior in Sulfur Dots

Inorg Chem. 2022 Dec 26;61(51):21157-21168. doi: 10.1021/acs.inorgchem.2c04002. Epub 2022 Dec 15.

Abstract

Treatment of sulfur dots with polyethylene glycol (PEG) has been an efficient way to achieve a high luminescence quantum yield, and such a PEG-related quantum dot (QD)-synthesis strategy has been well documented. However, the polymeric insulating capping layer acting as the "thick shell" will significantly slow down the electron-transfer efficiency and severely hamper its practical application in an optoelectric field. Especially, the employment of synthetic polymers with long alkyl chains or large molecular weights may lead to structural complexity or even unexpected changes of physical characteristics for QDs. Therefore, in sulfur dot preparation, it is a breakthrough to use short-chain molecular species to replace PEG for better control and reproducibility. In this article, a solvent-type passivation (STP) strategy has been reported, and no PEG or any other capping agent is required. The main role of the solvent, ethanol, is to directly react with NaOH, and the generated sodium ethoxide passivates the surface defects. The afforded STP-enhanced emission sulfur dots (STPEE-SDs) possess not only the self-quenching-resistant feature in the solid state but also the extension of fluorescence band toward the wavelength as long as 645 nm. The realization of sulfur dot emission in the deep-red region with a decent yield (8.7%) has never been reported. Moreover, a super large Stokes shift (300 nm, λex = 345 nm, λem = 645 nm) and a much longer decay lifetime (109 μs) have been found, and such values can facilitate to suppress the negative influence from background signals. Density functional theory demonstrates that the surface passivation via sodium ethoxide is dynamically favorable, and the spectroscopic insights into emission behavior could be derived from the passivation effect of the sulfur vacancy as well as the charge-transfer process dominated by the highly electronegative ethoxide layer.

MeSH terms

  • Polyethylene Glycols / chemistry
  • Polymers
  • Quantum Dots* / chemistry
  • Reproducibility of Results
  • Solvents
  • Sulfur

Substances

  • Solvents
  • sodium ethoxide
  • Polyethylene Glycols
  • Polymers
  • Sulfur