Genetic characterization and diversity assessment in 'Bhangor' indigenous swamp buffalo population using heterologous microsatellite markers

Anim Biotechnol. 2023 Dec;34(9):4380-4386. doi: 10.1080/10495398.2022.2154220. Epub 2022 Dec 15.

Abstract

'Bhangor' newly identified swamp buffalo population from North East Indian, was characterized using microsatellite markers. Genomic DNA was isolated from blood samples of 76 unrelated animals, 15 microsatellite markers (CSSM33, BM1818, CSRM60, HEL13, ILSTS019, ILSTS025, ILSTS028, ILSTS029, ILSTS033, ILSTS036, ILSTS056, ILSTS058, ILSTS061, ILSTS089 and ETH003) were found to be highly polymorphic in the population of the selected markers. A total of 114 alleles were observed, which ranged from 3 in CSRM60 and ILSTS025 locus to 12 in ILSTS056 and ILSTS061. The mean effective number of alleles across all polymorphic loci was found to be 3.76. The overall mean expected heterozygosity and unbiased expected heterozygosity values were 0.67 and 0.68, ranging from 0.067 (ILSTS025) to 0.85 (ILSTS058) and 0.068 (ILSTS025) to 0.86 (ILSTS058), respectively. Within the population, the inbreeding estimates (FIS) ranged between -0.4352 and 0.804, with an average FIS of 0.114 ± 0.033. The outcome for infinite allele model (IAM), two-phase model (TPM) and test for mode shift revealed the absence of any recent bottleneck in the investigated buffalo population. The population was found to be in optimum diversity based on polymorphic microsatellite markers. With fast changing agro-climatic conditions; there is an urgent need to characterize the nondescript livestock populations.

Keywords: Genetic diversity; buffalo; microsatellite.

MeSH terms

  • Alleles
  • Animals
  • Buffaloes* / genetics
  • Genetic Variation* / genetics
  • Heterozygote
  • Inbreeding
  • Microsatellite Repeats / genetics