Potential use of the S-protein-Angiotensin converting enzyme 2 binding pathway in the treatment of coronavirus disease 2019

Front Public Health. 2022 Nov 28:10:1050034. doi: 10.3389/fpubh.2022.1050034. eCollection 2022.

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the pathogen that causes coronavirus disease 2019 (COVID-19), infects humans through a strong interaction between the viral spike protein (S-protein) and angiotensin converting enzyme 2 (ACE2) receptors on the cell surface. The infection of host lung cells by SARS-CoV-2 leads to clinical symptoms in patients. However, ACE2 expression is not restricted to the lungs; altered receptors have been found in the nasal and oral mucosa, vessel, brain, pancreas, gastrointestinal tract, kidney, and heart. The future of COVID-19 is uncertain, however, new viral variants are likely to emerge. The SARS-CoV-2 Omicron variant has a total of 50 gene mutations compared with the original virus; 15 of which occur in the receptor binding domain (RBD). The RBD of the viral S-protein binds to the human ACE2 receptor for viral entry. Mutations of the ACE2-RBD interface enhance tight binding by increasing hydrogen bond interactions and expanding the accessible surface area. Extracorporeal membrane oxygenation, hyperbaric oxygen, and aggressive dialysis for the treatment of COVID-19 have shown various degrees of clinical success. The use of decoy receptors based on the ACE2 receptor as a broadly potent neutralizer of SARS-CoV-2 variants has potential as a therapeutic mechanism. Drugs such as 3E8 could block binding of the S1-subunit to ACE2 and restrict the infection of ACE2-expressing cells by a variety of coronaviruses. Here, we discuss the development of ACE2-targeted strategies for the treatment and prevention of COVID-19.

Keywords: 3E8; S-protein; angiotensin converting enzyme 2; coronavirus disease 2019; receptor binding domain.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Angiotensin-Converting Enzyme 2 / chemistry
  • Angiotensin-Converting Enzyme 2 / metabolism
  • COVID-19* / therapy
  • Humans
  • Peptidyl-Dipeptidase A / chemistry
  • Peptidyl-Dipeptidase A / genetics
  • Peptidyl-Dipeptidase A / metabolism
  • SARS-CoV-2*
  • Spike Glycoprotein, Coronavirus / chemistry
  • Spike Glycoprotein, Coronavirus / genetics
  • Spike Glycoprotein, Coronavirus / metabolism

Substances

  • Angiotensin-Converting Enzyme 2
  • Spike Glycoprotein, Coronavirus
  • Peptidyl-Dipeptidase A
  • spike protein, SARS-CoV-2

Supplementary concepts

  • SARS-CoV-2 variants