E-cigarette synthetic cooling agent WS-23 and nicotine aerosols differentially modulate airway epithelial cell responses

Toxicol Rep. 2022 Sep 20:9:1823-1830. doi: 10.1016/j.toxrep.2022.09.010. eCollection 2022.

Abstract

Electronic cigarette (e-cig) aerosol exposures are strongly associated with pulmonary dysfunctions, and the airway epithelial cells (AECs) of respiratory passages play a pivotal role in understanding this association. However, not much is known about the effect of synthetic cooling agents such as WS-23 on AECs. WS-23 is a synthetic menthol-like cooling agent widely used to enhance the appeal of e-cigs and to suppress the harshness and bitterness of other e-cig constituents. Using primary human AECs, we compared the effects of aerosolized WS-23 with propylene glycol/vegetable glycerin (PG/VG) vehicle control and nicotine aerosol exposures. AECs treated with 3 % WS-23 aerosols showed a significant increase in viable cell numbers compared to PG/VG-vehicle aerosol exposed cells and cell growth was comparable following 2.5 % nicotine aerosol exposure. AEC inflammatory factors, IL-6 and ICAM-1 levels were significantly suppressed by WS-23 aerosols compared to PG/VG-controls. When differentiated AECs were challenged with WS-23 aerosols, there was a significant increase in secretory mucin MUC5AC expression with no discernible change in airway inflammatory SCGB1A1 expression. Compared to PG/VG-controls, WS-23 or nicotine aerosols presented with increased MUC5AC expression, but there was no synergistic effect of WS-23 + nicotine combination exposure. Thus, WS-23 and nicotine aerosols modulate the AEC responses and induce goblet cell hyperplasia, which could impact the airway physiology and susceptibility to respiratory diseases.

Keywords: Airway epithelial cells; E-cigarette; ICAM-1; MUC5AC; Mucin; Nicotine; Synthetic cooling agent; WS-23.