All-electrical reading and writing of spin chirality

Sci Adv. 2022 Dec 14;8(50):eadd6984. doi: 10.1126/sciadv.add6984. Epub 2022 Dec 14.

Abstract

Spintronics promises potential data encoding and computing technologies. Spin chirality plays a very important role in the properties of many topological and noncollinear magnetic materials. Here, we propose the all-electrical detection and manipulation of spin chirality in insulating chiral antiferromagnets. We demonstrate that the spin chirality in insulating epitaxial films of TbMnO3 can be read electrically via the spin Seebeck effect and can be switched by electric fields via the multiferroic coupling of the spin chirality to the ferroelectric polarization. Moreover, multivalued states of the spin chirality can be realized by the combined application of electric and magnetic fields. Our results are a path toward next-generation, low-energy consumption memory and logic devices that rely on spin chirality.