Facilitating the Carrier Transport Kinetics at the CsPbBr3/Carbon Interface through SbX3 (X = Cl, Br, I) Passivation

ACS Appl Mater Interfaces. 2022 Dec 28;14(51):57362-57370. doi: 10.1021/acsami.2c17046. Epub 2022 Dec 14.

Abstract

The nonradiative carrier recombination at the perovskite/carrier selective layer (CSL) interface was accounted for the inferior power conversion efficiency (PCE) of perovskite solar cells (PSCs), especially rigid all-inorganic perovskite (CsPbI3 and CsPbBr3). In this study, targeting the poor interface, we introduce SbX3 (X = Cl, Br, I) surface passivation at the CsPbBr3/carbon interface. Smoothed compressive strain, reduced defect density, and enhanced energy-level alignment were achieved simultaneously, facilitating carrier extraction at the selective interface. With the simple aqueous solution-based two-step process, the PCE of our SbI3 passivated carbon-based CsPbBr3 PSCs has increased from 7.81% (without passivation) to 9.69%, a ∼25% enhancement. Specifically, Voc (1.657 V) of the SbI3-passivated cells was much higher than that of the control ones (1.488 V), confirming the ameliorated interface. Finally, our unencapsulated SbI3 passivated devices maintain 90% of their initial PCEs while left in the air for 30 days with a relative humidity of 60%. To conclude, we present an interfacial carrier extraction-enhanced strategy for preparing high-performance and stable CsPbBr3-based PSCs.

Keywords: all-inorganic carbon-based PSCs; aqueous phase deposition; enhanced energy-level alignment; reduced defect density; smoothed compressive strain.