The modulation effect of auxiliary ligands on photochromic properties of 3D naphthalene diimide coordination polymers

Dalton Trans. 2023 Jan 3;52(2):360-365. doi: 10.1039/d2dt03480h.

Abstract

Two novel naphthalene diimide (NDI) coordination polymers (CPs), [Cd(NicNDI)(4,4'-SBC)] (1) and [Cd(NicNDI)(2,2'-BPC)] (2) (NicNDI = (3-pyridylacylamino)-1,4,5,8-naphthalene diimide, 4,4'-SBC = 4,4'-stilbene dicarboxylic acid, 2,2'-BPC = 2,2'-biphenyl dicarboxylic acid), were designed and prepared by the combination of electron-deficient NicNDI and electron-rich aromatic carboxylic acid ligands in the presence of cadmium ions. The usage of aromatic carboxylic acid ligands with different conjugation degrees, sizes, shapes and charge densities leads to the generation of distinct interpenetrated three-dimensional (3D) frameworks. Interestingly, photochromism of 1 and weak photoactivity of 2 should be attributed to the introduction of different auxiliary ligands and consequently the formation of distinct interfacial contacts of electron donors (EDs)/electron acceptors (EAs) (dπ-π = 3.427 Å, infinite -ED-EA-ED-EA- for 1vs. dπ-π = 3.634 Å, discrete ED-EA-ED for 2), suggesting a subtle modulating effect of auxiliary ligands on interfacial contacts, photoinduced intermolecular electron transfer (PIET) and photoresponsive behaviors.