Graphene oxide elicits microbiome-dependent type 2 immune responses via the aryl hydrocarbon receptor

Nat Nanotechnol. 2023 Jan;18(1):42-48. doi: 10.1038/s41565-022-01260-8. Epub 2022 Dec 12.

Abstract

The gut microbiome produces metabolites that interact with the aryl hydrocarbon receptor (AhR), a key regulator of immune homoeostasis in the gut1,2. Here we show that oral exposure to graphene oxide (GO) modulates the composition of the gut microbiome in adult zebrafish, with significant differences in wild-type versus ahr2-deficient animals. Furthermore, GO was found to elicit AhR-dependent induction of cyp1a and homing of lck+ cells to the gut in germ-free zebrafish larvae when combined with the short-chain fatty acid butyrate. To obtain further insights into the immune responses to GO, we used single-cell RNA sequencing to profile cells from whole germ-free embryos as well as cells enriched for lck. These studies provided evidence for the existence of innate lymphoid cell (ILC)-like cells3 in germ-free zebrafish. Moreover, GO endowed with a 'corona' of microbial butyrate triggered the induction of ILC2-like cells with attributes of regulatory cells. Taken together, this study shows that a nanomaterial can influence the crosstalk between the microbiome and immune system in an AhR-dependent manner.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Immunity, Innate
  • Lymphocytes / metabolism
  • Microbiota*
  • Receptors, Aryl Hydrocarbon* / genetics
  • Receptors, Aryl Hydrocarbon* / metabolism
  • Zebrafish / metabolism
  • Zebrafish Proteins / genetics
  • Zebrafish Proteins / metabolism

Substances

  • Receptors, Aryl Hydrocarbon
  • Zebrafish Proteins
  • graphene oxide