Enhanced photoelectrocatalytic decomplexation of Ni-EDTA and simultaneous recovery of metallic nickel via TiO2/Ni-Sb-SnO2 bifunctional photoanode and activated carbon fiber cathode

J Environ Sci (China). 2023 Apr:126:198-210. doi: 10.1016/j.jes.2022.05.023. Epub 2022 May 26.

Abstract

In order to enhance Ni-EDTA decomplexation and Ni recovery via photoelectrocatalytic (PEC) process, TiO2/Ni-Sb-SnO2 bifunctional electrode was fabricated as the photoanode and activated carbon fiber (ACF) was introduced as the cathode. At a cell voltage of 3.5 V and initial solution pH of 6.3, the TiO2/Ni-Sb-SnO2 bifunctional photoanode exhibited a synergetic effect on the decomplexation of Ni-EDTA with the pseudo-first-order rate constant of 0.01068 min-1 with 180 min by using stainless steel (SS) cathode, which was 1.5 and 2.4 times higher than that of TiO2 photoanode and Ni-Sb-SnO2 anode, respectively. Moreover, both the efficiencies of Ni-EDTA decomplexation and Ni recovery were improved to 98% from 86% and 73% from 41% after replacing SS cathode with ACF cathode, respectively. Influencing factors on Ni-EDTA decomplexation and Ni recovery were investigated and the efficiencies were favored at acidic condition, higher cell voltage and lower initial Ni-EDTA concentration. Ni-EDTA was mainly decomposed via ·OH radicals which generated via the interaction of O3, H2O2, and UV irradiation in the contrasted PEC system. Then, the liberated Ni2+ ions which liberated from Ni-EDTA decomplexation were eventually reduced to metallic Ni on the ACF cathode surface. Finally, the stability of the constructed PEC system on Ni-EDTA decomplexation and Ni recovery was exhibited.

Keywords: Activated carbon fiber cathode; Ni recovery; Ni-EDTA decomplexation; Photoelectrocatalytic; TiO(2)/Ni-Sb-SnO(2) bifunctional photoanode.

MeSH terms

  • Carbon Fiber
  • Charcoal*
  • Edetic Acid
  • Hydrogen Peroxide
  • Nickel*
  • Stainless Steel

Substances

  • Carbon Fiber
  • Nickel
  • Charcoal
  • Edetic Acid
  • Hydrogen Peroxide
  • Stainless Steel