Deep Learning in the Detection of Disinformation about COVID-19 in Online Space

Sensors (Basel). 2022 Nov 30;22(23):9319. doi: 10.3390/s22239319.

Abstract

This article focuses on the problem of detecting disinformation about COVID-19 in online discussions. As the Internet expands, so does the amount of content on it. In addition to content based on facts, a large amount of content is being manipulated, which negatively affects the whole society. This effect is currently compounded by the ongoing COVID-19 pandemic, which caused people to spend even more time online and to get more invested in this fake content. This work brings a brief overview of how toxic information looks like, how it is spread, and how to potentially prevent its dissemination by early recognition of disinformation using deep learning. We investigated the overall suitability of deep learning in solving problem of detection of disinformation in conversational content. We also provided a comparison of architecture based on convolutional and recurrent principles. We have trained three detection models based on three architectures using CNN (convolutional neural networks), LSTM (long short-term memory), and their combination. We have achieved the best results using LSTM (F1 = 0.8741, Accuracy = 0.8628). But the results of all three architectures were comparable, for example the CNN+LSTM architecture achieved F1 = 0.8672 and Accuracy = 0.852. The paper offers finding that introducing a convolutional component does not bring significant improvement. In comparison with our previous works, we noted that from all forms of antisocial posts, disinformation is the most difficult to recognize, since disinformation has no unique language, such as hate speech, toxic posts etc.

Keywords: COVID-19; deep learning; detection of disinformation; machine learning; neural networks; text data processing; web mining.

MeSH terms

  • COVID-19* / diagnosis
  • Deep Learning*
  • Humans
  • Language
  • Neural Networks, Computer
  • Pandemics