A 1-μm-Band Injection-Locked Semiconductor Laser with a High Side-Mode Suppression Ratio and Narrow Linewidth

Sensors (Basel). 2022 Nov 28;22(23):9239. doi: 10.3390/s22239239.

Abstract

We demonstrate a narrow-linewidth, high side-mode suppression ratio (SMSR) semiconductor laser based on the external optical feedback injection locking technology of a femtosecond-apodized (Fs-apodized) fiber Bragg grating (FBG). A single frequency output is achieved by coupling and integrating a wide-gain quantum dot (QD) gain chip with a Fs-apodized FBG in a 1-μm band. We propose this low-cost and high-integration scheme for the preparation of a series of single-frequency seed sources in this wavelength range by characterizing the performance of 1030 nm and 1080 nm lasers. The lasers have a maximum SMSR of 66.3 dB and maximum output power of 134.6 mW. Additionally, the lasers have minimum Lorentzian linewidths that are measured to be 260.5 kHz; however, a minimum integral linewidth less than 180.4 kHz is observed by testing and analyzing the power spectra of the frequency noise values of the lasers.

Keywords: apodized fiber Bragg grating; frequency noise; narrow linewidth; semiconductor laser; side-mode suppression ratio.