In Situ Facile Synthesis of Low-Cost Biogenic Eggshell-Derived Nanohydroxyapatite/Chitosan Biocomposites for Orthopedic Implant Applications

Nanomaterials (Basel). 2022 Dec 4;12(23):4302. doi: 10.3390/nano12234302.

Abstract

In situ facile synthesis and the characterization of nanohydroxyapatite/chitosan (nHAP/CS) biocomposites were investigated for examining their potential applications in orthopedic implant technology. Firstly, the bare nHAP, europium-doped hydroxyapatite (Eu-nHAP), yttrium-doped hydroxyapatite (Y-nHAP), and Eu- and Y-codoped hydroxyapatite (Eu,Y-nHAP) nanoparticles were synthesized by the wet precipitation technique using biowaste-eggshell-derived calcium oxide powders. Then, through ultrasonication using the nanohydroxyapatite/chitosan mixtures (molar ratio = 1:2), the nHAP/CS, Eu-nHAP/CS, Y-nHAP/CS, and Eu,Y-nHAP/CS biocomposites were fabricated. Among them, Eu,Y-nHAP/CS showed higher cell viability (94.9%), higher solubility (pH = 7.6 after 21 days), and greater antibacterial activity than those of the other composites. In addition, Eu,Y-nHAP/CS exhibited improved mechanical properties compared with the other composites. For example, the nanoindentation test displayed the Eu,Y-nHAP/CS-coated 316L stainless steel implant to possess a higher Young's modulus value (9.24 GPa) and greater hardness value (300.71 MPa) than those of the others. The results indicate that the biomass-eggshell-derived Eu,Y-doped nHAP is of good use for orthopedic implant applications.

Keywords: biocompatibility; biocomposite; implant coating; indentation.