Quality Characteristics of Novel Pasta Enriched with Non-Extruded and Extruded Blackcurrant Pomace

Molecules. 2022 Dec 6;27(23):8616. doi: 10.3390/molecules27238616.

Abstract

Fruit pomace is a valuable by-product in terms of its chemical composition, which potential might be used through transformation of the pomace into food ingredients. The aim of this work was to assess the effect of partial (5% and 10%) substitution of powdered non-extruded or extruded blackcurrant pomace for semolina in pasta formula on nutritional and technological properties of the final product. The pasta was assessed for chemical composition, DPPH antiradical activity, color, cooking and textural properties. Presence of the by-products in the pasta resulted in increased total dietary fiber content (from 1.89 ± 0.06 up to 10.03 ± 0.15 g/100 g, dwb), fat content (from 1.29 ± 0.01 up to 2.70 ± 0.05 g/100 g, dwb) and DPPH antiradical activity (from 253 ± 15 up to 1037 ± 7 µmol TE/g, dwb), as well as in significantly different color (p < 0.05) as compared to the semolina-only pasta. The optimal cooking time was shortened by 1.0−1.5 min and by 2.0 min in the case of the lower and higher, respectively, level of pasta supplementation. The water absorption decreased by up to 32% in the enriched pasta. In general, the cooking loss remained unchanged. The uncooked product containing the extruded fruit pomace was characterized by significantly higher breaking strength (p < 0.05) as compared to the standard pasta. Presence of the pomace also affected texture of the cooked pasta, increasing its firmness and hardness and, when using the non-extruded pomace, the tensile strength. In our research, we have shown that durum wheat pasta enriched with 5 or 10% of powdered blackcurrant pomace or their extrudates constitute a food product of improved nutritional value and of appropriate textural characteristics, while maintaining culinary properties that meet pasta industry requirements.

Keywords: blackcurrant; fiber; pasta; pomace; semolina; texture.

MeSH terms

  • Cooking / methods
  • Dietary Fiber / analysis
  • Flour* / analysis
  • Nutritive Value
  • Triticum* / chemistry

Substances

  • Dietary Fiber