Fabrication of Copper of Harmonic Structure: Mechanical Property-Based Optimization of the Milling Parameters and Fracture Mechanism

Materials (Basel). 2022 Dec 3;15(23):8628. doi: 10.3390/ma15238628.

Abstract

A severe plastic deformation process for the achievement of favorable mechanical properties for metallic powder is mechanical milling. However, to obtain the highest productivity while maintaining reasonable manufacturing costs, the process parameters must be optimized to achieve the best mechanical properties. This study involved the use of response surface methodology to optimize the mechanical milling process parameters of harmonic-structure pure Cu. Certain critical parameters that affect the properties and fracture mechanisms of harmonic-structure pure Cu were investigated and are discussed in detail. The Box-Behnken design was used to design the experiments to determine the correlation between the process parameters and mechanical properties. The results show that the parameters (rotation speed, mechanical milling time, and powder-to-ball ratio) affect the microstructure characteristics and influence the mechanical performance, including the fracture mechanisms of harmonic-structure pure Cu specimens. The best combination values of the ultimate tensile strength (UTS) and elongation were found to be 272 MPa and 46.85%, respectively. This combination of properties can be achieved by applying an optimum set of process parameters: a rotation speed of 200 rpm; mechanical milling time of 17.78 h; and powder-to-ball ratio of 0.065. The superior UTS and elongation of the harmonic-structure pure Cu were found to be related to the delay of void and crack initiation in the core and shell interface regions, which in turn were controlled by the degree of strength variation between these regions.

Keywords: bimodal grain structure; fracture mechanism; harmonic structure; mechanical milling; mechanical property; optimization; pure copper.