Gradient Structure Design and Welding-Hammering Hybrid Remanufacturing Process of Continuous Casting Rollers

Materials (Basel). 2022 Dec 1;15(23):8588. doi: 10.3390/ma15238588.

Abstract

To improve the service life and reduce the repair cost of continuous casting rollers, a new welding-hammering hybrid remanufacturing process in which the roller was designed with a gradient structure was proposed, and corresponding equipment was developed. First, the failure modes and their causes for a continuous casting roller were analyzed by numerical simulation. The cyclic tension-compression shear stress, cyclic tension-compression normal stress, thermal cycle, and highly corrosive environment caused fatigue cracking and overall peeling of the roller surface. Second, the gradient structure composed of a base layer, transition layer, and strengthened layer of a continuous casting roller was designed, and materials for each layer were selected according to their different service conditions. Third, novel equipment for continuous welding-hammering composite remanufacturing was developed, and the optimized process parameters were obtained through welding experiments. Finally, an application test was carried out; the microscopic analysis showed that refined grains, fewer welding defects, and better surface toughness were obtained. Compared with traditional remanufacturing processes without hammering, the welding-hammering hybrid process achieved a forged structure instead of as-cast structure, which significantly improved the service life of the continuous casting roller by about 100%.

Keywords: failure mode; microscopic analysis; roller; welding-hammering hybrid.