Effect of Shot Peen Forming on Corrosion-Resistant of 2024 Aluminum Alloy in Salt Spray Environment

Materials (Basel). 2022 Dec 1;15(23):8583. doi: 10.3390/ma15238583.

Abstract

The effect of shot peen forming on the corrosion-resistant of 2024 aluminum alloy in a salt spray environment was studied with an electrochemical workstation. The surface morphology and cross sectional morphology of the original and shot peen-formed sample were studied by a scanning electron microscope. After shot peen forming, the salt spray corrosion resistance of 2024 aluminum alloy was worsened (the corrosion rates of the original alloy and the shot peen-formed alloy were 0.10467 mg/(cm2·h) and 0.27333 mg/(cm2·h), respectively, when the salt spray corrosion time was 5 h). The radius of capacitive reactance arc of the sample subjected to shot peen forming was smaller than that of the original sample. When the salt spray corrosion time was 5 h, the doping density (NA) of the original alloy was 2.5128 × 10-13/cm3. After shot peen forming, the NA of the alloy increased to 15 × 10-13/cm3. For the shot peen-formed sample, pitting corrosion first occurred in the crater lap zone and became severe with salt spray time. The cross sectional morphology of both original and the shot peen-formed samples shows that severe intergranular corrosion occurred in the salt spray environment. However, for the original sample, the intergranular corrosion distribution was lamellar. For shot peen-formed sample, the intergranular corrosion distribution was network.

Keywords: electrochemical test; intergranular corrosion; salt spray corrosion; shot peen forming.