Liposome System for Encapsulation of Spirulina platensis Protein Hydrolysates: Controlled-Release in Simulated Gastrointestinal Conditions, Structural and Functional Properties

Materials (Basel). 2022 Dec 1;15(23):8581. doi: 10.3390/ma15238581.

Abstract

This study aimed to evaluate the physicochemical, structural, antioxidant and antibacterial properties of chitosan-coated (0.5 and 1% CH) nanoliposomes containing hydrolyzed protein of Spirulina platensis and its stability in simulated gastric and intestine fluids. The chitosan coating of nanoliposomes containing Spirulina platensis hydrolyzed proteins increased their size and zeta potential. The fourier transform infrared spectroscopy (FT-IR) test showed an effective interaction between the hydrolyzed protein, the nanoliposome, and the chitosan coating. Increasing the concentration of hydrolyzed protein and the percentage of chitosan coating neutralized the decreasing effect of microencapsulation on the antioxidant activity of peptides. Chitosan coating (1%) resulted in improved stability of size, zeta potential, and poly dispersity index (PDI) of nanoliposomes, and lowered the release of the hydrolyzed Spirulina platensis protein from nanoliposomes. Increasing the percentage of chitosan coating neutralized the decrease in antibacterial properties of nanoliposomes containing hydrolyzed proteins. This study showed that 1% chitosan-coated nanoliposomes can protect Spirulina platensis hydrolyzed proteins and maintain their antioxidant and antibacterial activities.

Keywords: FTIR; liposomes; protein hydrolysate; simulated gastric fluids; simulated intestine fluids.

Grants and funding

This research received no external funding.