Study of High-Silicon Steel as Interior Rotor for High-Speed Motor Considering the Influence of Multi-Physical Field Coupling and Slotting Process

Materials (Basel). 2022 Nov 29;15(23):8502. doi: 10.3390/ma15238502.

Abstract

Currently, high-speed motors usually adopt rotor structures with surface-mounted permanent magnets, but their sheaths will deteriorate performance significantly. The motor with interior rotor structure has the advantages of high power density and efficiency. At the same time, high silicon steel has low loss and high mechanical strength, which is extremely suitable for high-speed motor rotor core material. Therefore, in this paper, the feasibility of using high silicon steel as the material of an interior rotor high-speed motor is investigated. Firstly, the magnetic properties of high silicon steel under multi-physical fields were tested and analyzed in comparison with conventional silicon steel. Meanwhile, an interior rotor structure of high-speed motor using high silicon steel as the rotor core is proposed, and its electromagnetic, mechanical, and thermal properties are simulated and evaluated. Then, the experimental comparative analysis was carried out in terms of the slotting process of the core, and the machining of the high silicon steel rotor core was successfully completed. Finally, the feasibility of the research idea was verified by the above theoretical analysis and experimental characterization.

Keywords: high-silicon steel; interior rotor; motor; multi-physical field; slotting.

Grants and funding

This research was funded by programme of Scholars of the Xingliao Plan (No. XLYC2002113) and Shenyang University of Technology Interdisciplinary Team Project (No. 100600453).