Multi-Objective Optimization of Process Parameters in 6016 Aluminum Alloy Hot Stamping Using Taguchi-Grey Relational Analysis

Materials (Basel). 2022 Nov 24;15(23):8350. doi: 10.3390/ma15238350.

Abstract

The hot stamping technology of aluminum alloy is of great significance for realizing the light weight of the automobile body, and the proper process parameters are important conditions to obtain excellent aluminum alloy parts. In this paper, the thermal deformation behavior of 6016 aluminum alloy at a high temperature is experimentally studied to provide a theoretical basis for a finite element model. With the help of blank stamping finite element software, a numerical model of a 6016 aluminum alloy automobile windshield beam during hot stamping was established. The finite element model was verified by a forming experiment. Then, the effect of the process parameters, including blank holder force, die gap, forming temperature, friction coefficient, and stamping speed on aluminum alloy formability were investigated using Taguchi design, grey relational analysis (GRA), and analysis of variance (ANOVA). Stamping tests were arranged at temperatures between 480 and 570 °C, blank holder force between 20 and 50 kN, stamping speed between 50 and 200 mm/s, die gap between 1.05 t and 1.20 t (t is the thickness of the sheet), and friction coefficient between 0.15 and 0.60. It was found that the significant factors affecting the forming quality of the hot-stamped parts were blank holder force and stamping speed, with influence significance of 28.64% and 34.09%, respectively. The optimal parameters for hot stamping of the automobile windshield beam by the above analysis are that the die gap is 1.05 t, the blank temperature is 540 °C, the coefficient of friction is 0.15, stamping speed is 200 mm/s, and blank holder force is 50 kN. The optimized maximum thickening rate is 4.87% and the maximum thinning rate is 9.00%. The optimization method used in this paper and the results of the process parameter optimization provide reference values for the optimization of hot stamping forming.

Keywords: aluminum alloy; grey relation analysis; hot stamping; orthogonal design method; process parameters.