Potential risks of CO2 removal project based on carbonate pump to marine ecosystem

Sci Total Environ. 2023 Mar 1:862:160728. doi: 10.1016/j.scitotenv.2022.160728. Epub 2022 Dec 7.

Abstract

The development of marine carbon sequestration project has an important potential for carbon neutralization in the short-term (several decades). Marine carbon sequestration technology is based on biological and carbonate pumps to increase particulate organic carbon and authigenic insoluble carbonates to the deep sea or seafloor, aiming to achieve permanent carbon sequestration. Particularly, chemical carbon sequestration technology based on carbonate pump is proposed and considered to achieve short-term marine carbon sequestration in recent years. This technology mainly includes alkaline mineral addition and combining CO32- to insoluble carbonates to improve marine carbon fixation capacity. Potential marine ecosystem risks of chemical CO2 removal method should be considered before being a feasible technology. We reviewed the potential effects of marine chemical carbon sequestration project on marine organisms. Marine chemical carbon sequestration had two main effects on marine organisms: released chemicals effect, and particle effect. Released chemicals in mineral weathering directly affected phytoplankton and bacteria community. Particles formed during carbon sequestration process mainly affected filter feeding organisms. The toxic effects of particles on aquatic organisms increased with decreasing sizes and increasing concentrations of particle. Algae and crustaceans were the most sensitive groups exposed to metal nanoparticles (nm-μm) in seawaters, thus could be used as target species to evaluate ecological risk of small particles generated in chemical carbon sequestration project. Embryos or larva of filter feeding organisms were more sensitive to large clay and metal microparticles (μm‑mm) than adults, thus could be used as sensitive groups to establish safety concentration of large particles. The relatively inert metal nanoparticles and microparticles had higher safety concentrations than active ones. These particle concentration thresholds could be as a reference to design concentrations and initial sizes of applied minerals in marine chemical carbon sequestration project. This will ensure that the ecological risk is minimized when carbon fixation efficiency is maximized.

Keywords: Carbon sequestration; Carbonate pump; Mineral addition; Particle effect.

Publication types

  • Review

MeSH terms

  • Carbon
  • Carbon Dioxide*
  • Carbon Sequestration
  • Carbonates
  • Ecosystem*
  • Minerals

Substances

  • Carbon Dioxide
  • Carbonates
  • Minerals
  • Carbon