Relationships between resting-state EEG functional networks organization and individual differences in mind wandering

Sci Rep. 2022 Dec 8;12(1):21224. doi: 10.1038/s41598-022-25851-6.

Abstract

When performing cognitively demanding tasks, people tend to experience momentary distractions or personal associations that intercept their stream of consciousness. This phenomenon is known as Mind Wandering (MW) and it has become a subject of neuroscientific investigations. Off-task thoughts can be analyzed during task performance, but currently, MW is also understood as a dimension of individual differences in cognitive processing. We wanted to recognize the intrinsically-organized functional networks that could be considered the neuronal basis for MW dispositional variability. To achieve this goal we recruited a group of normal adults, and eventually divided the group in half, based on participants' scores on the scale measuring dispositional MW. Next, these groups were compared regarding the arrangement of preselected intrinsic functional networks, which were reconstructed based on multi-channel signal-source resting-state EEG. It appeared that subjects who tend to mind wander often exhibited decreased synchronization within the default mode network, and, simultaneously, strengthened connectivity between 'on-task' networks of diverse functional specificity. Such within- and between networks integrity patterns might suggest that greater Mind Wanderers present an atypical organization of resting-state brain activity, which may translate into attenuated resources needed to maintain attentional control in task-related conditions.

MeSH terms

  • Cognition*
  • Electroencephalography*
  • Humans