Exercise increases arterial stiffness independent of blood pressure in older Veterans

J Hypertens. 2023 Feb 1;41(2):316-325. doi: 10.1097/HJH.0000000000003334. Epub 2022 Dec 8.

Abstract

Background: Exercise-induced changes in arterial function could contribute to a hypertensive response to exercise (HRE) in older individuals. We performed the present analysis to define the acute arterial stiffness response to exercise in ambulatory older adults.

Methods: Thirty-nine Veterans (>60 years old), without known cardiovascular disease, participated in this study, including 19 Veterans who were hypertensive (70.8 ± 6.8 years, 53% women) and 20 Veterans who were normotensive (72.0 ± 9.3 years, 40% women). Arterial stiffness parameters were measured locally with carotid artery ultrasound and regionally with carotid-femoral pulse wave velocity (cfPWV) before and during the 10 min after participants performed a Balke maximal exercise treadmill stress test.

Results: The arterial stiffness response to exercise was similar for control and hypertensive participants. At 6 min postexercise, cfPWV was significantly increased (Δ1.5 ± 1.9 m/s, P = 0.004) despite mean blood pressure (BP) having returned to its baseline value (Δ1 ± 8 mmHg, P = 0.79). Arterial mechanics modeling also showed BP-independent increases in arterial stiffness with exercise ( P < 0.05). Postexercise cfPWV was correlated with postexercise SBP ( r = 0.50, P = 0.004) while baseline cfPWV ( r = 0.13, P = 1.00), and postexercise total peripheral resistance ( r = -0.18, P = 1.00) were not.

Conclusion: In older Veterans, exercise increases arterial stiffness independently of BP and the arterial stiffness increase with exercise is associated with increased postexercise SBP. BP-independent increases in arterial stiffness with exercise could contribute to a HRE in older adults.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Aged
  • Blood Pressure / physiology
  • Female
  • Humans
  • Hypertension*
  • Male
  • Middle Aged
  • Pulse Wave Analysis
  • Vascular Stiffness* / physiology
  • Veterans*