Evaluation of the in vitro activity of ceftaroline, ceftazidime/avibactam and comparator antimicrobial agents against clinical isolates from paediatric patients in Kuwait: ATLAS data 2012-19

JAC Antimicrob Resist. 2021 Dec 6;3(4):dlab159. doi: 10.1093/jacamr/dlab159. eCollection 2021 Dec.

Abstract

Objectives: To report antimicrobial resistance data for Gram-positive and Gram-negative pathogens isolated from paediatric patients in three hospitals in Kuwait during 2012-19.

Methods: In vitro activity of antimicrobials against isolates from documented infections was determined using CLSI broth microdilution method and breakpoints at a central laboratory. Enterobacterales and Pseudomonas aeruginosa isolates were screened for β-lactamases using multiplex PCR assays. Phenotypic determination of resistance in Haemophilus influenzae and Gram-positive isolates was performed using standard methodologies.

Results: Among 515 Enterobacterales isolates, 29.3% were ESBL-positive; susceptibility was highest to amikacin, ceftazidime/avibactam and meropenem (≥97.4%), regardless of ESBL status. CTX-M-15 was identified in 87.1% of ESBL-positive Escherichia coli and 84.2% of ESBL-positive Klebsiella pneumoniae isolates. Of 111 P. aeruginosa isolates, 9.9% were MDR and 12.6% meropenem-resistant (MEM-R). Amikacin and ceftazidime/avibactam had the highest susceptibility rates in the overall group (≥92.8%), with reduced rates among MDR and MEM-R isolates. All 269 MRSA and 180 MSSA isolates were susceptible to daptomycin, linezolid, teicoplanin, tigecycline and vancomycin. All MSSA and 99.3% of MRSA were ceftaroline susceptible. All 168 pneumococcal isolates were susceptible to ceftaroline, linezolid, tigecycline and vancomycin. H. influenzae and Streptococcus pyogenes ceftaroline susceptibility rates were ≥93.3% and ≥95.6%.

Conclusions: Most isolates of Enterobacterales (including resistant phenotypes) and P. aeruginosa from Kuwait during 2012-19 were susceptible to ceftazidime/avibactam. Ceftaroline was active against most Gram-positive isolates, including resistant phenotypes, and ESBL-negative Enterobacterales. These results indicate that novel antibiotics such as ceftazidime/avibactam and ceftaroline represent valuable treatment options for paediatric infections, including those caused by MDR organisms.