Characteristics of rhizosphere and endogenous bacterial community of Ulleung-sanmaneul, an endemic plant in Korea: application for alleviating salt stress

Sci Rep. 2022 Dec 7;12(1):21124. doi: 10.1038/s41598-022-25731-z.

Abstract

Microbes influence plant growth and fitness. However, the structure and function of microbiomes associated with rare and endemic plants remain underexplored. To investigate the bacterial community structure of Ulleung-sanmaneul (U-SMN), an endemic plant in Korea, samples were collected from natural and cultivated habitats, and their 16S rDNA was sequenced. The root bacterial community structure differed from those of bulk soil and rhizosphere in both habitats. Endogenous bacteria in cultivated plants were less diverse than wild plants, but Luteibacter rhizovicinus, Pseudomonas fulva, and Sphingomonas pruni were shared. Co-inoculation of Pseudoxanthomonas sp. JBCE485 and Variovorax paradoxus JBCE486 promoted growth and induced salt stress resistance in Arabidopsis and chive. Changes in growth promotion and phenotypes of plants by co-inoculation were mediated by increased auxin production. Each strain colonized the roots without niche competition. The results indicated that host selectivity was influential than environmental factors in formulating endophytic bacterial composition, and domestication simplified the bacterial community diversity. Our results will contribute to the growth and maintenance of endemic U-SMN plants.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacteria* / genetics
  • Salt Stress*