Computational study to investigate Proteus mirabilis proteomes for multi-epitope vaccine construct design

J Biomol Struct Dyn. 2023 Nov;41(19):10190-10201. doi: 10.1080/07391102.2022.2153920. Epub 2022 Dec 7.

Abstract

Proteus mirabilis is a gram-negative bacterium particularly known for its unique swarming ability. The swarming gives the bacteria ability to enhance adherence to the catheter surface and epithelium cells of the urethra to cause catheter associated urinary tract infections. P. mirabilis has evolved resistant to antibiotics. Additionally, there is an approved vaccine against P. mirabilis, thus demanding for identification of new vaccine targets. This gram-negative bacterium consists of 19,502 core proteins, out of which 19,063 are redundant proteins and remaining 439 are non-redundant proteins. The non-redundant proteins have 21 proteins present on the cell surface out of which 11 proteins are virulent. Antigenicity analysis predicted only 2 proteins as antigenic (fimbrial biogenesis outer membrane usher protein and ligand-gated channel protein). Four and seven B-cells epitopes were predicted from the former and later proteins, respectively. The predicted B-cells epitopes were used for T- cells epitopes prediction. The predicted epitopes were linked to each other through GPGPG linkers and joined with cholera toxin beta subunit adjuvant. A multi-epitopes vaccine construct consisting of 226 residues was docked with MHC-I, MHC-II and TLR-4. The best docked complex in each case has binding energy of -714.6, -744.6 and -829.5 kcal/mol, respectively. Moreover, the docking results were validated through molecular dynamics simulation and binding free energies estimation. The net energy of -137.2 kcal/mol was calculated for vaccine-MHC-I complex, -133.39 kcal/mol for vaccine-MHC-II and -158.68 kcal/mol for vaccine-TLR-4 complex. The designed vaccine construct could provoke immune responses against targeted pathogen and may be used in experimental testing.Communicated by Ramaswamy H. Sarma.

Keywords: Proteus mirabilis; molecular docking; molecular dynamic simulation; multi-epitopes vaccine construct; pan-genome analysis.

MeSH terms

  • Computational Biology
  • Epitopes, B-Lymphocyte
  • Epitopes, T-Lymphocyte
  • Membrane Proteins
  • Molecular Docking Simulation
  • Proteome* / chemistry
  • Proteus mirabilis*
  • Toll-Like Receptor 4
  • Vaccines, Subunit

Substances

  • Proteome
  • Toll-Like Receptor 4
  • Epitopes, T-Lymphocyte
  • Epitopes, B-Lymphocyte
  • Membrane Proteins
  • Vaccines, Subunit