Boronate Affinity-Amplified Electrochemical Aptasensing of Lipopolysaccharide

Anal Chem. 2022 Dec 20;94(50):17733-17738. doi: 10.1021/acs.analchem.2c05004. Epub 2022 Dec 7.

Abstract

As lipopolysaccharide (LPS) is closely associated with sepsis and other life-threatening conditions, the point-of-care (POC) detection of LPS is of significant importance to human health. In this work, we illustrate an electrochemical aptasensor for the POC detection of low-abundance LPS by utilizing boronate affinity (BA) as a simple, efficient, and cost-effective amplification strategy. Briefly, the BA-amplified electrochemical aptasensing of LPS involves the tethering of the aptamer receptors and the BA-mediated direct decoration of LPS with redox signal tags. As the polysaccharide chain of LPS contains hundreds of cis-diol sites, the covalent crosslinking between the phenylboronic acid group and cis-diol sites can be harnessed for the site-specific decoration of each LPS with hundreds of redox signal tags, thereby enabling amplified detection. As it involves only a single-step operation (∼15 min), the BA-mediated signal amplification holds the significant advantages of unrivaled simplicity, rapidness, and cost-effectiveness over the conventional nanomaterial- and enzyme-based strategies. The BA-amplified electrochemical aptasensor has been successfully applied to specifically detect LPS within 45 min, with a detection limit of 0.34 pg/mL. Moreover, the clinical utility has been validated based on LPS detection in complex serum samples. As a proof of concept, a portable device has been developed to showcase the potential applicability of the BA-amplified electrochemical LPS aptasensor in the POC testing. In view of its simplicity, rapidness, and cost-effectiveness, the BA-amplified electrochemical LPS aptasensor holds broad application prospects in the POC testing.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aptamers, Nucleotide*
  • Biosensing Techniques*
  • Electrochemical Techniques
  • Gold
  • Humans
  • Limit of Detection
  • Lipopolysaccharides
  • Nanostructures*

Substances

  • Lipopolysaccharides
  • Aptamers, Nucleotide
  • Gold