Quantum ghost imaging of a transparent polarisation sensitive phase pattern

Sci Rep. 2022 Dec 6;12(1):21105. doi: 10.1038/s41598-022-25676-3.

Abstract

A transparent polarisation sensitive phase pattern exhibits a position and polarisation dependent phase shift of transmitted light and it represents a unitary transformation. A quantum ghost image of this pattern is produced with hyper-entangled photons consisting of Einstein-Podolsky-Rosen (EPR) and polarisation entanglement. In quantum ghost imaging, a single photon interacts with the pattern and is detected by a stationary detector and a non-interacting photon is imaged on a coincidence camera. EPR entanglement manifests spatial correlations between an object plane and a ghost image plane, whereas a polarisation dependent phase shift exhibited by the pattern is detected with polarisation entanglement. In this quantum ghost imaging, the which-position-polarisation information of a photon interacting with the pattern is not present in the experiment. A quantum ghost image is constructed by measuring correlations of the polarisation-momentum of an interacting photon with polarisation-position of a non-interacting photon. The experiment is performed with a coincidence single photon detection camera, where a non-interacting photon travels a long optical path length of 17.83 m from source to camera and a pattern is positioned at an optical distance of 19.16 m from the camera.